Tongue contour extraction from ultrasound images based on deep neural network

نویسندگان

  • Aurore Jaumard-Hakoun
  • Kele Xu
  • Pierre Roussel-Ragot
  • Gérard Dreyfus
  • Maureen Stone
  • Bruce Denby
چکیده

Studying tongue motion during speech using ultrasound is a standard procedure, however automatic ultrasound image labelling remains a challenge, as standard tongue shape extraction methods typically require human intervention. This article presents a method based on deep neural networks to automatically extract tongue contours from speech ultrasound images. We use a deep autoencoder trained to learn the relationship between an image and its related contour, so that the model is able to automatically reconstruct contours from the ultrasound image alone. We use an automatic labelling algorithm instead of time-consuming handlabelling during the training process. We afterwards estimate the performances of both automatic labelling and contour extraction as compared to hand-labelling. Observed results show quality scores comparable to the state of the art.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tongue tracking in ultrasound images using eigentongue decomposition and artificial neural networks

This paper describes a machine learning approach for extracting automatically the tongue contour in ultrasound images. This method is developed in the context of visual articulatory biofeedback for speech therapy. The goal is to provide a speaker with an intuitive visualization of his/her tongue movement, in real-time, and with minimum human intervention. Contrary to most widely used techniques...

متن کامل

Integration of Deep Learning Algorithms and Bilateral Filters with the Purpose of Building Extraction from Mono Optical Aerial Imagery

The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...

متن کامل

Non-melanoma skin cancer diagnosis with a convolutional neural network

Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC -Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’s disease)- are common non-invasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Speech Emotion Recognition Using Scalogram Based Deep Structure

Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1605.05912  شماره 

صفحات  -

تاریخ انتشار 2015